Skip to content

Model

TITAN

The TITAN class is used to model agent interactions as they progress through time. The model can be run on an existing Population or it can create a Population during its construction. The most common entry point to the model is run, which will run the model for all time steps. To run step by step, step can be iterated through instead, just be sure to reset_trackers between steps.

Source code in titan/model.py
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
class TITAN:
    def __repr__(self):
        res = "\n"
        res += f"Seed: {self.run_seed}\n"
        res += f"Npop: {self.params.model.num_pop}\n"
        res += f"Time: {self.params.model.time.num_steps}\n"

        return res

    def __init__(
        self,
        params: ObjMap,
        pop: Optional["population.Population"] = None,
    ):
        """
        This is the core class used to simulate the spread of exposures through a relationship based network.

        args:
            params: the parameter object for this model
            pop: an initialized population to run the model on
        """
        self.id = nanoid.generate(size=8)

        self.params = params
        # pre-fetch commonly used param sub-sets for performance
        self.calibration = params.calibration

        utils.set_up_logging(params)

        logging.info(f"Model ID: {self.id}")
        logging.info("=== Begin Initialization Protocol ===\n")

        if pop is None:
            logging.info("  Generating new population")
            self.pop = population.Population(params)
        else:
            logging.info("  Using provided population")
            self.pop = pop

        self.time = -1 * self.params.model.time.burn_steps  # burn is negative time

        self.features = [
            feature
            for feature in features.BaseFeature.__subclasses__()
            if self.params.features[feature.name]
        ]

        # set up the in-scope exposures
        self.exposures = [
            exposure
            for exposure in exposures.BaseExposure.__subclasses__()
            if self.params.exposures[exposure.name]
        ]

        self.interactions = {
            interaction.name: interaction
            for interaction in interactions.BaseInteraction.__subclasses__()
        }

        # Set seed format. 0: pure random, else: fixed value
        self.run_seed = utils.get_check_rand_int(params.model.seed.run)
        logging.info(f"  Run seed was set to: {self.run_seed}")
        self.run_random = random.Random(self.run_seed)
        self.np_random = np.random.default_rng(self.run_seed)
        random.seed(self.run_seed)
        logging.info(("  FIRST RANDOM CALL {}".format(random.randint(0, 100))))

        logging.info("  Resetting exit count")

        self.exits: Dict[str, List["ag.Agent"]] = {
            exit: []
            for exit, val in self.params.classes.exit.items()
            if val.exit_type != "none"
        }

        logging.info("\n=== Initialization Protocol Finished ===")

    def print_stats(self, stat: Dict[str, Dict[str, int]], outdir: str):
        """
        Create/update all of the reports defined in the params
        """
        for report in self.params.outputs.reports:
            printer = getattr(ao, report)
            printer(
                self.id,
                self.time,
                self.run_seed,
                self.pop.pop_seed,
                stat,
                self.params,
                outdir,
            )

        # network-based reports
        if (
            self.time % self.params.outputs.print_frequency == 0
            and self.params.model.network.enable
        ):
            network_outdir = os.path.join(outdir, "network")
            if self.params.outputs.network.calc_component_stats:
                ao.print_components(
                    self.id,
                    self.time,
                    self.run_seed,
                    self.pop.pop_seed,
                    self.pop.connected_components(),
                    network_outdir,
                )

            if self.params.outputs.network.calc_network_stats:
                ao.write_network_stats(
                    self.pop.graph, network_outdir, self.id, self.time
                )

            if self.params.outputs.network.edge_list:
                ao.write_graph_edgelist(
                    self.pop.graph, network_outdir, self.id, self.time
                )

    def reset_trackers(self):
        self.exits = {exit: [] for exit in self.exits}

    def run(self, outdir: str):
        """
        Runs the model for the number of time steps defined in params, at each time step does:

        1. Increments time
        2. Takes one step
        3. Resets trackers

        args:
            outdir: path to directory where results should be saved
        """
        # make sure initial state of things get printed
        stats = ao.get_stats(
            self.pop.all_agents,
            self.exits,
            self.params,
            self.exposures,
            self.features,
            self.time,
        )
        self.print_stats(stats, outdir)

        if self.params.model.time.burn_steps > 0:
            logging.info("  ===! Start Burn Loop !===")

        # time starts at negative burn steps, model run starts at t = 1
        while self.time < self.params.model.time.num_steps:
            if self.time == 0:
                if self.params.model.time.burn_steps > 0:
                    logging.info("  ===! Burn Loop Complete !===")
                logging.info("  ===! Start Main Loop !===")

            self.time += 1
            self.step(outdir)
            self.reset_trackers()

        logging.info("  ===! Main Loop Complete !===")

    def step(self, outdir: str):
        """
        A single time step in the model:

        1. Perform timeline_scaling updates to params if needed
        2. Update all agents
        3. Write/update reports with this timestep's data

        args:
            outdir: path to directory where reports should be saved
        """
        logging.info(
            f"\n                                                  .: TIME {self.time}"
        )
        logging.info(
            "  STARTING HIV count:{}  Total Incarcerated:{}  HR+:{}  "
            "PrEP:{}".format(
                len(exposures.HIV.agents),
                sum([1 for a in self.pop.all_agents if a.incar.active]),  # type: ignore[misc, attr-defined]
                sum([1 for a in self.pop.all_agents if a.high_risk.active]),  # type: ignore[misc, attr-defined]
                sum([1 for a in self.pop.all_agents if a.prep.active]),  # type: ignore[misc, attr-defined]
            )
        )

        self.timeline_scaling()

        self.update_all_agents()

        stats = ao.get_stats(
            self.pop.all_agents,
            self.exits,
            self.params,
            self.exposures,
            self.features,
            self.time,
        )
        self.print_stats(stats, outdir)

        logging.info(f"Number of relationships: {len(self.pop.relationships)}")
        self.pop.all_agents.print_subsets(logging.info)

    def update_all_agents(self):
        """
        The core of the model.  For a time step, update all of the agents and relationships:


        1. End relationships with no remaining duration
        2. Agent exit/entrance with [exit][titan.model.TITAN.exit] and [enter][titan.model.TITAN.enter]
        3. Agent migration (if enabled)
        4. Update partner assignments (create new relationships as needed)
        5. Create an agent zero (if enabled and the time is right)
        6. Agents in relationships interact
        7. Update features at the population level
        8. Update each agent's status for:
            * age
            * all exposures
            * all features (agent level)
        """
        # If static network, ignore relationship progression
        if not self.params.features.static_network:
            for rel in copy(self.pop.relationships):
                if (
                    self.params.partnership.dissolve.enabled
                    and self.time == self.params.partnership.dissolve.time
                ):
                    rel.progress(force=True)
                    self.pop.remove_relationship(rel)
                elif rel.progress():
                    self.pop.remove_relationship(rel)

        if self.params.features.exit_enter:
            self.exit()
            self.enter()

        if self.params.location.migration.enabled:
            self.pop.migrate()

        if not self.params.features.static_network:
            self.pop.update_partner_assignments(t=self.time)

        # If agent zero enabled, create agent zero at the beginning of main loop.
        if (
            self.time == self.params.agent_zero.start_time
            and self.params.features.agent_zero
        ):
            self.make_agent_zero()

        for rel in self.pop.relationships:
            self.agents_interact(rel)

        for feature in self.features:
            feature.update_pop(self)

        for agent in self.pop.all_agents:
            self.update_agent(agent)

    def update_agent(self, agent):
        """
        Update an agent at the given model timestep.

        Update the agent's status for:
            * age
            * all exposures
            * all features (agent level)
        """
        # happy birthday agents!
        if self.time > 0 and (self.time % self.params.model.time.steps_per_year) == 0:
            agent.age += 1

        for exposure in self.exposures:
            agent_feature = getattr(agent, exposure.name)
            agent_feature.update_agent(self)

        for feature in self.features:
            agent_feature = getattr(agent, feature.name)
            agent_feature.update_agent(self)

    def make_agent_zero(self):
        """
        Identify an agent as agent zero and HIV convert them
        """
        bonds = [  # Find what bond_types have the allowed interaction
            bond
            for bond, act_type in self.params.classes.bond_types.items()
            if self.params.agent_zero.interaction_type in act_type.acts_allowed
        ]
        max_partners = 0
        max_agent = None
        zero_eligible = []
        for agent in self.pop.all_agents:
            num_partners = agent.get_num_partners(bond_types=bonds)
            if num_partners >= self.params.agent_zero.num_partners:
                zero_eligible.append(agent)
            if num_partners > max_partners:
                max_partners = num_partners
                max_agent = agent

        agent_zero = utils.safe_random_choice(zero_eligible, self.run_random)
        if agent_zero:  # if eligible agent, make agent 0
            logging.info(f"\tAgent zero selected: {agent_zero}")
            zero_attr = getattr(agent_zero, self.params.agent_zero.exposure)
            zero_attr.convert(self)
        elif self.params.agent_zero.fallback and max_agent is not None:
            logging.info(f"\tFallback agent zero selected: {agent_zero}")
            zero_attr = getattr(max_agent, self.params.agent_zero.exposure)
            zero_attr.convert(self)
        else:
            raise ValueError("No agent zero!")

    def timeline_scaling(self):
        """
        Scale/un-scale any params with timeline_scaling definitions per their
        definition.  Applied to all parameters (main model, and location specific).
        """
        if not self.params.features.timeline_scaling:
            return None

        # gather all of the param objectss to be scaled
        params_set = [self.params]
        for location in self.pop.geography.locations.values():
            params_set.append(location.params)

        # iterate over each param and update the values if the time is right
        for params in params_set:
            for defn in params.timeline_scaling.timeline.values():
                param = defn.parameter
                if param != "ts_default":
                    if defn.start_time == self.time:
                        logging.info(f"timeline scaling - {param}")
                        utils.scale_param(params, param, defn.scalar)
                    elif defn.stop_time == self.time:
                        logging.info(f"timeline un-scaling - {param}")
                        utils.scale_param(params, param, 1 / defn.scalar)

    def agents_interact(self, rel: "ag.Relationship"):
        """
        Let an agent interact with a partner.

        Based on the interaction types of the relationship, interact in the following ways:

        * Peer Change Agent
        * Injection
        * Sex

        args:
            rel : The relationship that the agents interact in
        """
        interaction_types = self.params.classes.bond_types[rel.bond_type].acts_allowed
        # If either agent is incarcerated, skip their interaction
        if rel.agent1.incar.active or rel.agent2.incar.active:  # type: ignore[attr-defined]
            return

        for interaction_type in interaction_types:
            interaction = self.interactions[interaction_type]
            interaction.interact(self, rel)

    def exit(self):
        """
        Allow agents to exit model.

        Determine probability of agent exit based on demographics for each model
        exit class [params.classes.exit] and remove agent from the model as necessary.
        """
        if self.exits == {}:
            return

        for agent in self.pop.all_agents:
            for strategy in self.params.exit_enter.values():
                # Get parameters of the exit class
                exit = self.params.classes.exit[strategy.exit_class]
                if exit.ignore_incar and agent.incar.active:
                    continue

                # leaving this as "case" for when we can update to 3.10 safely
                case = exit.exit_type
                if case == "age_out":
                    # agent ages out of model
                    if agent.age > exit.age:
                        self.exits[strategy.exit_class].append(agent)
                        break
                elif case == "death":
                    p = (
                        prob.get_death_rate(
                            agent.hiv.active,
                            agent.hiv.aids,
                            agent.drug_type,
                            agent.sex_type,
                            agent.haart.adherent,
                            agent.race,
                            agent.location,
                            self.params.model.time.steps_per_year,
                            strategy.exit_class,
                        )
                        * self.calibration.mortality
                    )

                    if self.run_random.random() < p:
                        # agent dies
                        self.exits[strategy.exit_class].append(agent)
                        break
                elif case == "drop_out":
                    p = (
                        agent.location.params.demographics[agent.race]
                        .sex_type[agent.sex_type]
                        .drug_type[agent.drug_type]
                        .exit[strategy.exit_class]
                        .prob
                    )
                    if self.run_random.random() < p:
                        # agent leaves study pop
                        self.exits[strategy.exit_class].append(agent)
                        break

        for exit_list in self.exits.values():
            for agent in exit_list:
                self.pop.remove_agent(agent)

    def enter(self):
        """
        Create new agents and/or replace exited agents.

        Based on enter/exit pairs [params.exit_enter], create new agents through the following strategies:

            * new_agent: draw agent characteristics from model params
            * replace: use exited agent's characteristics to get new characteristics

        """
        for strategy in self.params.exit_enter.values():
            entrance = self.params.classes.enter[strategy.entry_class]
            if entrance.enter_type == "new_agent":
                # determine new agent locations and characteristics
                if self.params.classes.exit[strategy.exit_class].exit_type == "none":
                    # Adding new agents without removing any
                    num_new_agents = len(self.pop.all_agents.members) * entrance.prob
                else:
                    # number of new agents given removed agents
                    num_new_agents = (
                        len(self.exits[strategy.exit_class]) * entrance.prob
                    )

                # keep location and race to ensure population distribution by
                # location and race stays consistent
                for loc in self.pop.geography.locations.values():
                    for race in self.params.classes.races:
                        for i in range(
                            round(
                                num_new_agents
                                * loc.ppl
                                * loc.params.demographics[race].ppl
                            )
                        ):
                            age = entrance.age if entrance.age_in else None
                            new_agent = self.pop.create_agent(
                                loc, race, self.time, age=age
                            )
                            self.pop.add_agent(new_agent)
            elif entrance.enter_type == "replace":
                for agent in self.exits[strategy.exit_class]:
                    age = entrance.age if entrance.age_in else None
                    if self.run_random.random() < entrance.prob:
                        new_agent = self.pop.create_agent(
                            agent.location,
                            agent.race,
                            self.time,
                            sex_type=agent.sex_type,
                            drug_type=agent.drug_type,
                            age=age,
                        )
                        # add agent to pop
                        self.pop.add_agent(new_agent)

__init__(params, pop=None)

This is the core class used to simulate the spread of exposures through a relationship based network.

Parameters:

Name Type Description Default
params ObjMap

the parameter object for this model

required
pop Optional[Population]

an initialized population to run the model on

None
Source code in titan/model.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def __init__(
    self,
    params: ObjMap,
    pop: Optional["population.Population"] = None,
):
    """
    This is the core class used to simulate the spread of exposures through a relationship based network.

    args:
        params: the parameter object for this model
        pop: an initialized population to run the model on
    """
    self.id = nanoid.generate(size=8)

    self.params = params
    # pre-fetch commonly used param sub-sets for performance
    self.calibration = params.calibration

    utils.set_up_logging(params)

    logging.info(f"Model ID: {self.id}")
    logging.info("=== Begin Initialization Protocol ===\n")

    if pop is None:
        logging.info("  Generating new population")
        self.pop = population.Population(params)
    else:
        logging.info("  Using provided population")
        self.pop = pop

    self.time = -1 * self.params.model.time.burn_steps  # burn is negative time

    self.features = [
        feature
        for feature in features.BaseFeature.__subclasses__()
        if self.params.features[feature.name]
    ]

    # set up the in-scope exposures
    self.exposures = [
        exposure
        for exposure in exposures.BaseExposure.__subclasses__()
        if self.params.exposures[exposure.name]
    ]

    self.interactions = {
        interaction.name: interaction
        for interaction in interactions.BaseInteraction.__subclasses__()
    }

    # Set seed format. 0: pure random, else: fixed value
    self.run_seed = utils.get_check_rand_int(params.model.seed.run)
    logging.info(f"  Run seed was set to: {self.run_seed}")
    self.run_random = random.Random(self.run_seed)
    self.np_random = np.random.default_rng(self.run_seed)
    random.seed(self.run_seed)
    logging.info(("  FIRST RANDOM CALL {}".format(random.randint(0, 100))))

    logging.info("  Resetting exit count")

    self.exits: Dict[str, List["ag.Agent"]] = {
        exit: []
        for exit, val in self.params.classes.exit.items()
        if val.exit_type != "none"
    }

    logging.info("\n=== Initialization Protocol Finished ===")

agents_interact(rel)

Let an agent interact with a partner.

Based on the interaction types of the relationship, interact in the following ways:

  • Peer Change Agent
  • Injection
  • Sex

Parameters:

Name Type Description Default
rel

The relationship that the agents interact in

required
Source code in titan/model.py
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
def agents_interact(self, rel: "ag.Relationship"):
    """
    Let an agent interact with a partner.

    Based on the interaction types of the relationship, interact in the following ways:

    * Peer Change Agent
    * Injection
    * Sex

    args:
        rel : The relationship that the agents interact in
    """
    interaction_types = self.params.classes.bond_types[rel.bond_type].acts_allowed
    # If either agent is incarcerated, skip their interaction
    if rel.agent1.incar.active or rel.agent2.incar.active:  # type: ignore[attr-defined]
        return

    for interaction_type in interaction_types:
        interaction = self.interactions[interaction_type]
        interaction.interact(self, rel)

enter()

Create new agents and/or replace exited agents.

Based on enter/exit pairs [params.exit_enter], create new agents through the following strategies:

* new_agent: draw agent characteristics from model params
* replace: use exited agent's characteristics to get new characteristics
Source code in titan/model.py
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def enter(self):
    """
    Create new agents and/or replace exited agents.

    Based on enter/exit pairs [params.exit_enter], create new agents through the following strategies:

        * new_agent: draw agent characteristics from model params
        * replace: use exited agent's characteristics to get new characteristics

    """
    for strategy in self.params.exit_enter.values():
        entrance = self.params.classes.enter[strategy.entry_class]
        if entrance.enter_type == "new_agent":
            # determine new agent locations and characteristics
            if self.params.classes.exit[strategy.exit_class].exit_type == "none":
                # Adding new agents without removing any
                num_new_agents = len(self.pop.all_agents.members) * entrance.prob
            else:
                # number of new agents given removed agents
                num_new_agents = (
                    len(self.exits[strategy.exit_class]) * entrance.prob
                )

            # keep location and race to ensure population distribution by
            # location and race stays consistent
            for loc in self.pop.geography.locations.values():
                for race in self.params.classes.races:
                    for i in range(
                        round(
                            num_new_agents
                            * loc.ppl
                            * loc.params.demographics[race].ppl
                        )
                    ):
                        age = entrance.age if entrance.age_in else None
                        new_agent = self.pop.create_agent(
                            loc, race, self.time, age=age
                        )
                        self.pop.add_agent(new_agent)
        elif entrance.enter_type == "replace":
            for agent in self.exits[strategy.exit_class]:
                age = entrance.age if entrance.age_in else None
                if self.run_random.random() < entrance.prob:
                    new_agent = self.pop.create_agent(
                        agent.location,
                        agent.race,
                        self.time,
                        sex_type=agent.sex_type,
                        drug_type=agent.drug_type,
                        age=age,
                    )
                    # add agent to pop
                    self.pop.add_agent(new_agent)

exit()

Allow agents to exit model.

Determine probability of agent exit based on demographics for each model exit class [params.classes.exit] and remove agent from the model as necessary.

Source code in titan/model.py
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
def exit(self):
    """
    Allow agents to exit model.

    Determine probability of agent exit based on demographics for each model
    exit class [params.classes.exit] and remove agent from the model as necessary.
    """
    if self.exits == {}:
        return

    for agent in self.pop.all_agents:
        for strategy in self.params.exit_enter.values():
            # Get parameters of the exit class
            exit = self.params.classes.exit[strategy.exit_class]
            if exit.ignore_incar and agent.incar.active:
                continue

            # leaving this as "case" for when we can update to 3.10 safely
            case = exit.exit_type
            if case == "age_out":
                # agent ages out of model
                if agent.age > exit.age:
                    self.exits[strategy.exit_class].append(agent)
                    break
            elif case == "death":
                p = (
                    prob.get_death_rate(
                        agent.hiv.active,
                        agent.hiv.aids,
                        agent.drug_type,
                        agent.sex_type,
                        agent.haart.adherent,
                        agent.race,
                        agent.location,
                        self.params.model.time.steps_per_year,
                        strategy.exit_class,
                    )
                    * self.calibration.mortality
                )

                if self.run_random.random() < p:
                    # agent dies
                    self.exits[strategy.exit_class].append(agent)
                    break
            elif case == "drop_out":
                p = (
                    agent.location.params.demographics[agent.race]
                    .sex_type[agent.sex_type]
                    .drug_type[agent.drug_type]
                    .exit[strategy.exit_class]
                    .prob
                )
                if self.run_random.random() < p:
                    # agent leaves study pop
                    self.exits[strategy.exit_class].append(agent)
                    break

    for exit_list in self.exits.values():
        for agent in exit_list:
            self.pop.remove_agent(agent)

make_agent_zero()

Identify an agent as agent zero and HIV convert them

Source code in titan/model.py
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def make_agent_zero(self):
    """
    Identify an agent as agent zero and HIV convert them
    """
    bonds = [  # Find what bond_types have the allowed interaction
        bond
        for bond, act_type in self.params.classes.bond_types.items()
        if self.params.agent_zero.interaction_type in act_type.acts_allowed
    ]
    max_partners = 0
    max_agent = None
    zero_eligible = []
    for agent in self.pop.all_agents:
        num_partners = agent.get_num_partners(bond_types=bonds)
        if num_partners >= self.params.agent_zero.num_partners:
            zero_eligible.append(agent)
        if num_partners > max_partners:
            max_partners = num_partners
            max_agent = agent

    agent_zero = utils.safe_random_choice(zero_eligible, self.run_random)
    if agent_zero:  # if eligible agent, make agent 0
        logging.info(f"\tAgent zero selected: {agent_zero}")
        zero_attr = getattr(agent_zero, self.params.agent_zero.exposure)
        zero_attr.convert(self)
    elif self.params.agent_zero.fallback and max_agent is not None:
        logging.info(f"\tFallback agent zero selected: {agent_zero}")
        zero_attr = getattr(max_agent, self.params.agent_zero.exposure)
        zero_attr.convert(self)
    else:
        raise ValueError("No agent zero!")

print_stats(stat, outdir)

Create/update all of the reports defined in the params

Source code in titan/model.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
def print_stats(self, stat: Dict[str, Dict[str, int]], outdir: str):
    """
    Create/update all of the reports defined in the params
    """
    for report in self.params.outputs.reports:
        printer = getattr(ao, report)
        printer(
            self.id,
            self.time,
            self.run_seed,
            self.pop.pop_seed,
            stat,
            self.params,
            outdir,
        )

    # network-based reports
    if (
        self.time % self.params.outputs.print_frequency == 0
        and self.params.model.network.enable
    ):
        network_outdir = os.path.join(outdir, "network")
        if self.params.outputs.network.calc_component_stats:
            ao.print_components(
                self.id,
                self.time,
                self.run_seed,
                self.pop.pop_seed,
                self.pop.connected_components(),
                network_outdir,
            )

        if self.params.outputs.network.calc_network_stats:
            ao.write_network_stats(
                self.pop.graph, network_outdir, self.id, self.time
            )

        if self.params.outputs.network.edge_list:
            ao.write_graph_edgelist(
                self.pop.graph, network_outdir, self.id, self.time
            )

run(outdir)

Runs the model for the number of time steps defined in params, at each time step does:

  1. Increments time
  2. Takes one step
  3. Resets trackers

Parameters:

Name Type Description Default
outdir str

path to directory where results should be saved

required
Source code in titan/model.py
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def run(self, outdir: str):
    """
    Runs the model for the number of time steps defined in params, at each time step does:

    1. Increments time
    2. Takes one step
    3. Resets trackers

    args:
        outdir: path to directory where results should be saved
    """
    # make sure initial state of things get printed
    stats = ao.get_stats(
        self.pop.all_agents,
        self.exits,
        self.params,
        self.exposures,
        self.features,
        self.time,
    )
    self.print_stats(stats, outdir)

    if self.params.model.time.burn_steps > 0:
        logging.info("  ===! Start Burn Loop !===")

    # time starts at negative burn steps, model run starts at t = 1
    while self.time < self.params.model.time.num_steps:
        if self.time == 0:
            if self.params.model.time.burn_steps > 0:
                logging.info("  ===! Burn Loop Complete !===")
            logging.info("  ===! Start Main Loop !===")

        self.time += 1
        self.step(outdir)
        self.reset_trackers()

    logging.info("  ===! Main Loop Complete !===")

step(outdir)

A single time step in the model:

  1. Perform timeline_scaling updates to params if needed
  2. Update all agents
  3. Write/update reports with this timestep's data

Parameters:

Name Type Description Default
outdir str

path to directory where reports should be saved

required
Source code in titan/model.py
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
def step(self, outdir: str):
    """
    A single time step in the model:

    1. Perform timeline_scaling updates to params if needed
    2. Update all agents
    3. Write/update reports with this timestep's data

    args:
        outdir: path to directory where reports should be saved
    """
    logging.info(
        f"\n                                                  .: TIME {self.time}"
    )
    logging.info(
        "  STARTING HIV count:{}  Total Incarcerated:{}  HR+:{}  "
        "PrEP:{}".format(
            len(exposures.HIV.agents),
            sum([1 for a in self.pop.all_agents if a.incar.active]),  # type: ignore[misc, attr-defined]
            sum([1 for a in self.pop.all_agents if a.high_risk.active]),  # type: ignore[misc, attr-defined]
            sum([1 for a in self.pop.all_agents if a.prep.active]),  # type: ignore[misc, attr-defined]
        )
    )

    self.timeline_scaling()

    self.update_all_agents()

    stats = ao.get_stats(
        self.pop.all_agents,
        self.exits,
        self.params,
        self.exposures,
        self.features,
        self.time,
    )
    self.print_stats(stats, outdir)

    logging.info(f"Number of relationships: {len(self.pop.relationships)}")
    self.pop.all_agents.print_subsets(logging.info)

timeline_scaling()

Scale/un-scale any params with timeline_scaling definitions per their definition. Applied to all parameters (main model, and location specific).

Source code in titan/model.py
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def timeline_scaling(self):
    """
    Scale/un-scale any params with timeline_scaling definitions per their
    definition.  Applied to all parameters (main model, and location specific).
    """
    if not self.params.features.timeline_scaling:
        return None

    # gather all of the param objectss to be scaled
    params_set = [self.params]
    for location in self.pop.geography.locations.values():
        params_set.append(location.params)

    # iterate over each param and update the values if the time is right
    for params in params_set:
        for defn in params.timeline_scaling.timeline.values():
            param = defn.parameter
            if param != "ts_default":
                if defn.start_time == self.time:
                    logging.info(f"timeline scaling - {param}")
                    utils.scale_param(params, param, defn.scalar)
                elif defn.stop_time == self.time:
                    logging.info(f"timeline un-scaling - {param}")
                    utils.scale_param(params, param, 1 / defn.scalar)

update_agent(agent)

Update an agent at the given model timestep.

Update the agent's status for: * age * all exposures * all features (agent level)

Source code in titan/model.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def update_agent(self, agent):
    """
    Update an agent at the given model timestep.

    Update the agent's status for:
        * age
        * all exposures
        * all features (agent level)
    """
    # happy birthday agents!
    if self.time > 0 and (self.time % self.params.model.time.steps_per_year) == 0:
        agent.age += 1

    for exposure in self.exposures:
        agent_feature = getattr(agent, exposure.name)
        agent_feature.update_agent(self)

    for feature in self.features:
        agent_feature = getattr(agent, feature.name)
        agent_feature.update_agent(self)

update_all_agents()

The core of the model. For a time step, update all of the agents and relationships:

  1. End relationships with no remaining duration
  2. Agent exit/entrance with exit and enter
  3. Agent migration (if enabled)
  4. Update partner assignments (create new relationships as needed)
  5. Create an agent zero (if enabled and the time is right)
  6. Agents in relationships interact
  7. Update features at the population level
  8. Update each agent's status for:
    • age
    • all exposures
    • all features (agent level)
Source code in titan/model.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
def update_all_agents(self):
    """
    The core of the model.  For a time step, update all of the agents and relationships:


    1. End relationships with no remaining duration
    2. Agent exit/entrance with [exit][titan.model.TITAN.exit] and [enter][titan.model.TITAN.enter]
    3. Agent migration (if enabled)
    4. Update partner assignments (create new relationships as needed)
    5. Create an agent zero (if enabled and the time is right)
    6. Agents in relationships interact
    7. Update features at the population level
    8. Update each agent's status for:
        * age
        * all exposures
        * all features (agent level)
    """
    # If static network, ignore relationship progression
    if not self.params.features.static_network:
        for rel in copy(self.pop.relationships):
            if (
                self.params.partnership.dissolve.enabled
                and self.time == self.params.partnership.dissolve.time
            ):
                rel.progress(force=True)
                self.pop.remove_relationship(rel)
            elif rel.progress():
                self.pop.remove_relationship(rel)

    if self.params.features.exit_enter:
        self.exit()
        self.enter()

    if self.params.location.migration.enabled:
        self.pop.migrate()

    if not self.params.features.static_network:
        self.pop.update_partner_assignments(t=self.time)

    # If agent zero enabled, create agent zero at the beginning of main loop.
    if (
        self.time == self.params.agent_zero.start_time
        and self.params.features.agent_zero
    ):
        self.make_agent_zero()

    for rel in self.pop.relationships:
        self.agents_interact(rel)

    for feature in self.features:
        feature.update_pop(self)

    for agent in self.pop.all_agents:
        self.update_agent(agent)